Contains No CBI

September 16, 1992

Document Processing Center (TS-790) Office of Pollution Prevention and Toxics U. S. Environmental Protection Agency 401 M Street, SW Washington, DC 20460

Attn: Section 8(e) Coordinator (CAP Agreement)

92 97 25 PH 1: 14

8EHQ-92-12507 88920010692 INIT

Dear Sir or Madam:

Subject:

Report submitted in accordance with guidelines established by the U.S.

Environmental Protection Agency Registration and Agreement for the TSCA 8(e)

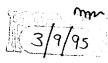
Compliance Audit Program

Report submitted by:

Eastman Kodak Company

343 State Street

Rochester, NY 14650


(716) 724-4000

CAP Agreement Identification Number (8ECAP-0039)

The report pertains to thiophene [CAS #110-02-1] and is being submitted because of effects observed during a study conducted by multiple routes of exposure. The title of the report being submitted is: "Basic Toxicity of Thiophene". The report is being identified as a study involving other than human effects (Unit II.B.2.b of CAP Agreement).

Groups of five male rats were administered one to thirteen doses of the test compound by gavage at 50, 100, 500 or 1,000 mg/kg over nineteen days. Feed intake and body weight gain were decreased at the 500 and 1,000 mg/kg dose levels. Four animals from the high-dose group either died or were euthanatized in poor condition by study Day 2. Abnormalities observed at the two highest doses included central nervous system toxicity, hematology and clinical chemistry changes, increased relative liver weights, and hepatic necrosis. Thymic cortical atrophy, splenic lymphoid depletion, and hypocellular bone marrow were observed in one animal in the high-dose group. No gross or histopathologic changes were observed at the two lowest dose levels.

Groups of five male rats were exposed by inhalation to 1,600 or 3,200 ppm of the test compound six hours per day for two to twelve exposures over a fifteen day period. Feed intake and body weight gain were decreased at both dose levels. Abnormalities observed at both dose levels included central nervous system toxicity, decreased absolute kidney and epididymis weights, and increased relative liver weights. Gross and histopathologic changes observed at the high-dose level included: pale, yellow mottled livers; hematuria; hepatic necrosis; nephrosis; rhinitis; and necrotic thymiditis.

Document Processing Center (TS-790) -- 2

The results of these studies have been published in *Neurotoxicity of Industrial and Commercial Chemicals*, *Volume 2*. J.L. O'Donoghue, Editor. CRC Press, Boca Raton, Florida. p. 50 (1985).

The test compound has been used internally and sold as a pure chemical; sales volumes have been less than 120 kg/year.

Questions regarding this submission should be addressed to:

Mr. William Hart Eastman Kodak Company Corporate Health and Environment Laboratories Rochester, NY 14652-3615 (716) 722-5991

Sincerely,

R. Hay Bell

R. Hays Bell, Ph.D. Vice President Corporate Health, Safety and Environment (716) 722-5036

RHB:DRG Enclosure

114486Н

TX-79-117

Basic Toxicity of Thiophene

Toxicology Section

Written by: John L. O'Donoghue, V.M.D., Ph.D.

Basic Toxicity of Thiophene

The oral LD₅₀ in male rats was 1131 mg/kg and in male mice was 1902 mg/kg. When applied to the depilated abdomens of guinea pigs under an occlusive wrap for 24 hours, strong irritation developed but absorption through the skin was not evident. Repeated application to the dorsum of guinea pigs by rub-on moderately exacerbated the irritative response. The material apparently defatted the skin. When tested by a standardized skin sensitization test, none of the five guinea pigs tested were sensitized. Although eye irritation tests were not conducted, based on the strong skin irritation observed in guinea pigs, this compound would be expected to be an eye irritant. The acute inhalation 6 hour LC₅₀ in rats was -525 ppm.

Data supplied by the Pennwalt Corporation stated that on rabbit skin refined Thiophene was a non-irritant with no evidence of percutaneous absorption and that the one-hour inhalation LC50 in mice was 2660 ppm.

Groups of male rats were administered 50, 100, 500 and 1000 mg/kg/day of the test compound by gavage. Control groups received distilled water. At 500 and 1000 mg/kg, weight gain was severely depressed and feed intake was depressed moderately in the 500 mg/kg rats and severely in 1000 mg/kg rats. At 50 and 100 mg/kg, these parameters were comparable to controls except for slight increases in weight gain and feed intake in 50 mg/kg rats.

Clinical abnormalities were present in the two highest doses but not in the other groups. In the 1000 mg/kg group, one rat died within 24 hours of the first dose, and three additional rats were killed on the second day in poor condition thus, only one rat survived to the end of the study.

The three rats that were killed were weak, staggered, twitched, showed head tremors or showed abnormal limb jerking, which are indications of central nervous system toxicity. In the 500 mg/kg group, two rats were weak, staggered and twitched.

Hematology and clinical chemistries were abnormal at 500 and 1000 mg/kg but not at other doses. Rats from the 1000 mg/kg group showed a moderate decrease in hemoglobin and hematocrit. The white cell count was normal but the differential smear showed spherocytosis, anisocytosis, changes in red cell size, increased polychromasia, poikilocytosis, decreased number of platelets, large platelets and toxic granulation in segmented white blood cells. At 500 mg/kg, hemoglobin and hematocrit were normal while the white cell count was slightly elevated. The differential smear showed anisocytosis and poikilocytosis.

Serum clinical chemistries were also abnormal only in the two highest groups. In the 1000 mg/kg group, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and lactic dehydrogenase (LDH) were markedly elevated. Urea nitrogen was moderately elevated. In the 500 mg/kg group GOT and GPT were moderately elevated and alkaline phosphatase was slightly depressed. Sera were interior in the 1000 mg/kg group only. These changes are indicative of both hepatic and renal damage in the 1000 mg/kg group and hepatic damage in the 500 mg/kg group.

Organ weights were affected by the compound only in the two highest dose groups. Absolute liver weights were slightly elevated in the 1000 mg/kg group and slightly depressed in the 500 mg/kg group but on a relative basis both dose levels increase liver weight markedly in the 1000 mg/kg dose level and moderately in the 500 mg/kg dose level. Relative kidney but not absolute

kidney weights were slightly elevated in the 1000 mg/kg group. Absolute kidney weight in the 500 mg/kg group was slightly lower but in line with the lower body weight therefore on a relative basis was comparable to controls.

Gross pathology showed hemorrhage in the stomach and testes only in the 1000 mg/kg group. Histologically, hepatic necrosis was present in the 500 and 1000 mg/kg groups and one rat in the 1000 mg/kg group showed thymic cortical atrophy, splenic lymphoid depletion and hypocellular bone marrow. Pathologic examinations in the remaining animals were normal.

A second study was performed to examine the effects of thiophene by the inhalation route of exposure. Groups of five male rats were exposed to 1600 and 3200 ppm of the test compound or conditioned air six hours per day for 12 exposures over a 15 day period. At both exposure levels weight gain and feed intake were severely depressed. At 3200 ppm the animals were drowsy, showed slight weakness, lacrimated following first few exposures, showed alterations in respiratory rate following the first few exposures, and developed slight tremors until the third day of the test, and whole body twitching. One rat died on the second exposure day. At 1600 ppm clinical signs included tremors, drowsiness, lack of grooming, weakness and polyphyrin tears.

Hematologic determinations (hemoglobin, hematocrit, white blood cell count and differential cell counts) were comparable to controls except for a moderate decrease in white cell count in the 3200 ppm group.

Clinical chemistries (glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, lactic dehydrogenase, alkaline phosphatase, urea

Basic Toxicity of Thiophene -- 4

nitrogen and glucose) were comparable to control values.

Absolute liver weight in the 3200 ppm group was slightly depressed and was normal in the 1600 ppm group but relative liver weight was slightly increased in both groups. Absolute kidney weights and epididymis weights were slightly depressed but based on relative weight, they were comparable to controls. Absolute and relative testis weights were comparable to controls for both test groups.

On autopsy examination one treated animal showed a pale, yellow mottled liver and a urinary bladder filled with dark brown urine most likely due to blood pigments. All other animals were unremarkable. Histologically, this same animal showed severe hepatic necrosis, minimal nephrosis, minor necrotictic changes in the thymus and minor focal necrotic rhinitis.

All other animals were unremarkable.

In addition to this work, the literature cited on the summary sheets indicates that thiophene is neurotoxic in dogs and rats producing acute cerebellar granular cell necrosis.

Sites of toxic action for thiophene include the liver, kidney, lymphoid tissue, red blood cell, circulating granulocytes and central nervous system by systemic routes and the masal passages by local administration

The static 96 hour LC_{50} for fathead minnows was 100 µl/l and for daphnids, snails, flatworms and gammarus was >100 µl/l. The no-effect concentration on germination, hypocotyl growth and root growth of ryegrass, radish and lettuce was 100 µl/l. The Industrial Laboratory, Kodak Park, determined the chemical oxygen demand to be 1.6 gO₂/ml of sample. Total and biclogical oxygen demands were not determined due to poor water miscibility.

SUMMARY OF BASIC TOXICITY

Chemical Thioph	ene			
				Date_ 7/23/79
LD50 (mg/kg)	P.O. Rats	1131(700-182	9) <u>Mice</u>	1902 (1354-2672)
Remarks: Cli			h hair coat, weak	
Guinea Pig Skin	Irritation (covered) LD	50 >20 ml/kg Abs	corption: Evident
Slight	Moderate	Strong	Severe	Not evident
Remarks:				
Rabbit Eye Irri	tation ND			Fluorescein stain
	Slight	Moderat	e Strong	Cornea Adnexa
No. washed				
No. unwashed				
Remarks: Ba	sed on the re uld be expect	esults of the ed to produc	skin irritation e eye irritation.	test, this compound
Skin Sensitizat	ion Potential	l No. gui	nea pigs 5	
None 4/5	Weak 1	L/4 M	oderate	Potent
Remarks:				
Repeated (10 d	ays) Skin Ap	plication (ur	covered) No. g	uinea pigs5
Remarks: Re	peated appli	cation modera	tely exacerbated	the irritative response.
Acute Inhalation	n LC50	mg/m³ (ppr	a) Rats 4525	± 0
OTHER TESTS:	Data from	Pennwalt Cor	poration:	to the second area of charmet
*• ·	Rabbit sk	in irritation inhalation LO	test: non-irrit	tant, no evidence of absorpt O ppm
,	APT: TOXTO	OLOGICAL REVI	EW:	
		tam etevis ar	d paralysis.	Thiphene in dogs resulted
Bradley, P.	3 T M	Treenate of	thiophene on the	e purkinje cell dendritic
· ·		~ ~~~~ c+nd=	Neuronathol.	Appl. Neurobiol. 5:9-16, 197 imination of granular cells

in some areas of the cerebellum.

Other Tests: (continued)

Albrechtsen, R. and Jensen, H. Histochemical investigation of thiophene necrosis in the cerebellum of rats. Acta Neuropathol. 26:217-223, 1973.

Thiophene produced selective cerebellar granular cell necrosis when repeatedly administered by subcutaneous injection in rats.

SUMMARY OF BASIC TOXICITY-- 3

Repeated Exposure	Feeding	Drinkin	g Water	Gavag	ge Inh	alation
No. rats/group 5	No. expo	sures <u>1-13</u>	No. days_	19	 Carrier_	None
Units of exposure:	%	mg/kg	mg/m^3	ppm		
Exposure concentration	n: <u>1000</u>	500		_3	1000	500
Weight gain	<u>+3</u>	+3	Hematol	.ogy:		
Feed intake	+3	+2	Hgb. Hct.		+2 +2	N N
Daily dose (mg/kg/day) 1000	_500_	WBC Diff.	_	N Ab	1 Ab
Signs/behavior	<u>Ab</u> See Te	Ab			See Text	

Clinical chemistry:

GOT	_+3	<u>+2</u>
GFI	<u>+3</u>	<u>+2</u>
LDH	<u>+3</u>	N
AF	N	41
UN:	<u>+2</u>	N
Glucose	N	N

Organ weight:

<u>+1</u>	<u>+ 1</u>
<u>+3</u>	<u> † 2</u>
N	<u> + 1</u>
<u>+1</u>	\overline{N}

At 1000 mg/kg the serum was icteric.

Gross pathology: 100 mg/kg: hemorrhage in the stomach and testes

Histopathology: 500 and 1000 mg/kg: Hepatic necrosis

1000 mg/kg: one rat showed cortical atrophy of the thymus and hypocellularity of the bone marrow and lymphoid follicles of the spleen.

Site of toxic action: Liver, lymphoid tissue, kidney, central nervous system, red blood cell, circulating granulocytes.

Legend

- <u>† Increased</u>
- + Decreased
- 1 Slight
- 2 Moderate
- 3 Great
- N Normal
- <u>ND</u>Not done

4/79:bdo

SUMMARY OF BASIC TOXICITY-- 14

Repeated Exposure	Feeding	Drinking	g Water	Gavage	Inhalation
No. rats/group 5	No. expo	sures <u>12</u>	No. days_	18 Car	rier NONE
Units of exposure:	%	mg/kg	mg/m ³	ppm	
Exposure concentration	n: <u>100</u>	_50		100	50
Weight gain	<u> </u>		Hematol	ogy:	
Feed intake	_ N		Hgb. Hct.	N	<u>N</u>
Daily dose (mg/kg/day) <u>100</u>	_50	WBC Diff.	N	
Signs/behavior	_N	N	DIII.		
Clinical chemistry:			Organ w	eight:	
GOT GPT LDH AF UN Glucose	N N N N	N N N N N	Liver Ab Re Kidne Ab Re	s. <u>N</u> 1. <u>N</u> y s. <u>N</u>	

Gross pathology: No compound related changes identified.

Histopathology: No compound related changes identified.

Site of toxic action: See other sheets

Legend

	_Increased
+	 Decreased
1	Slight
2	Moderate
3	Great
N	Normal

ND Not done

4/79:bdo

SUMMARY OF BASIC TOXICITY-5

Repeated Exposure	Feeding	Drinking	Water	Gavage	Inhalation
No. rats/group 5	No. exposu	res 12	No. days_	<u> 15</u> Car	rier <u>NONE</u>
Units of exposure:	X		ng/m 3x	(ppm)	
Exposure concentration	n: <u>3200</u>	1600		3200	1600
Weight gain	<u>+3</u>	+3	Hematol	.ogy:	
Feed intake	+3_	+3	Hgb.	N	<u>N</u>
Daily dose (mg/kg/day)		Het. WBC Diff.	N 	<u>N</u>
Signs/behavior	<u>ďA</u>	_ Ab_	D 111.		
	See	text			

Clinical chemistry:

GOT GPT LDH AF UN Glucose	N N N N N N N N N N N N N N N N N N N	N 	Liver Abs. Rel. Kidney Abs. Rel.	+1 +1 +2
			Testes Abs.	n
			Rel. Epididymis:	N

Abs.

Rel.

Organ weight:

Gross pathology: 3200 ppm: liver mottled, yellow,

hematuria in 1/5 rats.

Histopathology: 3200 ppm: hepatic necrosis, nephrosis, necrotic thymiditis, rhinitis in 1/5 rats.

Site of toxic action: Liver, kidney, thymus, nasal passages, central nervous system.

Legend

<u>†</u>	_Increased
+	Decreased
1	Slight
2	Moderate
3	Great
N	Normal
ND	Not done

4/79:bdo

SUMMARY OF BASIC TOXICITY -- 6

Static 96 hour LC50	μ1/	1		Gammarus_	>100
Fathead minnows	100	Daphnids >100 Si	nails_ >100	Flatworms_	>100
No effect concentra	ation - µl/l				
	Germination	Hypocotyl Growth	h Root Grow	th	
Ryegrass	100	100	100		
Radish	100	100	100		
Lettuce	100	100	100		
Remarks: The compo	ound was not	miscible in water	•		
		- \			
Industrial Laborato	ory (g 0 ₂ /ml	sample)			
BOD ₅ <u>IT</u>	BOD ₂ ND	TOD ND	COD 1.6		
The test compound was	was not misc	ible with water.			

THE STATES TO STATES

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

WASHINGTON, D.C. 20460

R. Hays Bell, Ph.D. Vice President, Corporate Health, Safety, and Environment Eastman Kodak Company 343 State Street Rochester, New York 14650

OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES

MAY 0 8 1995

EPA acknowledges the receipt of information submitted by your organization under Section 8(e) of the Toxic Substances Control Act (TSCA). For your reference, copies of the first page(s) of your submission(s) are enclosed and display the TSCA §8(e) Document Control Number (e.g., 8EHQ-00-0000) assigned by EPA to your submission(s). Please cite the assigned 8(e) number when submitting follow-up or supplemental information and refer to the reverse side of this page for "EPA Information Requests".

All TSCA 8(e) submissions are placed in the public files unless confidentiality is claimed according to the procedures outlined in Part X of EPA's TSCA §8(e) policy statement (43 FR 11110, March 16, 1978). Confidential submissions received pursuant to the TSCA §8(e) Compliance Audit Program (CAP) should already contain information supporting confidentiality claims. This information is required and should be submitted if not done so previously. To substantiate claims, submit responses to the questions in the enclosure "Support Information for Confidentiality Claims". This same enclosure is used to support confidentiality claims for non-CAP submissions.

Please address any further correspondence with the Agency related to this TSCA 8(e) submission to:

Document Processing Center (7407)
Attn: TSCA Section 8(e) Coordinator
Office of Pollution Prevention and Toxics
U.S. Environmental Protection Agency
Washington, D.C. 20460-0001

EPA looks forward to continued cooperation with your organization in its ongoing efforts to evaluate and manage potential risks posed by chemicals to health and the environment.

Sincerely,

Terry R. O'Bryan

Risk Analysis Branch

Enclosure

12507A

23

Recycled/Recyclable
Printed with Soy/Canola link on paper that
contains at least 50% recycled fiber

Triage of 8(e) Submissions

Date se	ent to triage:	MAY 0 9	ं जिल्ली 	NON	-CAP	CAP)
Submis	ssion number: _	12507A		TSCA	A Inventory:	Y) N	D
Study 1	type (circle appr	opriate):					
Group	1 - Dick Cleme	nts (1 copy total)					
	ECO	AQUATO		V.			
	2 - Ernie Falke	(1 copy total) SETOX S Margosches (1 copy	r each)	w/NBUR			
	STOX	CTOX E	PI	RTOX	GTOX		
	STOX/ONCO	CTOX/ONCO IN	MMUNO	CYTO	NEUR		
Notes): ::	MET, etc.):				DATABASE	E ENTRY
				or Use Only		- DA	35
	entire docume	nt: 0 /1) 2 p	pages//	<u></u>	pages //	21 VIV	<u>"</u>
	Notes: Contractor rev	lewer: P_{i}	2	Date:	4/26/9	5	

CECATS\TRIAGE TRACKING DBASE ENTRY FORM

CECATS DATA: Submission # 8EHQ. OR92-12507 TYPE INT. SUPP FLWP SUBMITTER NAME: Eastman Ke	odaK	INFORMATION REQUESTED: FLWP DATE: 1501 NO INFO REQUESTED 1502 INFO REQUESTED (TECH) 1503 INFO REQUESTED (VOL ACTIONS) 1504 INFO REQUESTED (REPORTING RATIONALE) 1519 REFER TO CHEMICAL SCREENING 1520 CAP NOTICE	VOLUNTARY ACTIONS: 0401 NO ACTION RI PORTI D 0402 STUDIES PLANNEDATIND 0403 NOTIFICATION OF WORL 0404 LARELMSDS CHANGES 0405 PROCESSALANDLING CHO 0406 APPAUSE DISCONTINUEL 0407 PRODUCTION DISCONTI	KERSHIIERS JANGES D
SUB. DATE: 09 16/92 01	13 DATE: 09 24/9	3 CSRAD DATE: 03/09/95		
CHEMICAL NAME		<u> </u>		
INFORMATION TYPE:	PFC INFORM	ATION TYPE P.F.C.	INFORMATION TYPE:	PFC
0201 ONCO (HUMAN) 0202 ONCO (ANIMAL) 0203 CELL TRANS (IN VITRO) 0204 MUTA (IN VITRO) 0205 MUTA (IN VIVO) 0206 REPRO/IERATO (HUMAN) 0208 NEURO (HUMAN) 0209 NEURO (ANIMAL) 0210 ACUTE TOX. (HUMAN) 0211 CHR. TOX. (HUMAN) 0212 ACUTE TOX. (ANIMAL) 0213 SUB ACUTE TOX (ANIMAL) 0214 SUB CHRONIC TOX (ANIMAL) 0215 CHRONIC TOX (ANIMAL)	e1 e2 04	EPICLIN HUMAN EXPOS (PROD CONTAM) HUMAN EXPOS (ACCIDENTAL) HUMAN EXPOS (ACCIDENTAL) HUMAN EXPOS (MONITORING) ECOVAQUA TOX ENV. OCCCRELFATE EMER INCI OF ENV CONTAM RESPONSE REQEST DELAY PRODICOMPACHEM ID REPORTING RATIONALE CONFIDENTIAL ALLERG (HUMAN) ALLERG (ANIMAL) METAB/PHARMACO (ANIMAL) METAB/PHARMACO (HUMAN) ALOX ALO	10241 IMMUNO (ANIMAL) 10242 IMMUNO (HUMAN) 10243 CHEM/PHYS PROP 10244 CLASTO (IN VITRO) 10245 CLASTO (ANIMAL) 10246 CLASTO (HUMAN) 10247 DNA DAM/REPAIR 10248 PROD/USE/PROC 10251 MSDS 10299 OTHER	01 02 04 01 02 04
TRIAGE DATA: NON-CBI INVENTORY YES	ONGOING REVIEW YES (DROPREFER) Fish NO (CONTINUE) Departure	1003	internal Sales	190 KJ/41
CAS SR NO	NO (CONTINUE)	RET		

(maart)

> <ID NUMBER> 8 (e) -12507A

> <TOX CONCERN> M/L

> <COMMENT>

ACUTE ORAL TOXICITY IN RATS IS LOW CONCERN WITH MALE RAT AND MALE MOUSE LD50S OF 1131 AND 1902 MG/KG, RESPECTIVELY. NO DOSE LEVELS OR NUMBER OF ANIMALS USED IN THE TEST ARE GIVEN. CLINICAL SIGNS INCLUDED ROUGH COAT, WEAKNESS, TREMORS, AND ATAXIA.

SKIN IRRITATION IN GUINEA PIGS IS MEDIUM CONCERN. THE NUMBER OF ANIMALS WAS NOT GIVEN. THE TEST MATERIAL PRODUCED STRONG IRRITATION BUT NO EVIDENCE OF ABSORPTION.

ACUTE DERMAL TOXICITY IN GUINEA PIGS IS LOW CONCERN WITH AN LD50 OF > 20 ML/KG.

REPEATED SKIN APPLICATION IN GUINEA PIGS IS LOW CONCERN. WHEN 5 ANIMALS WERE TREATED, THE TEST MATERIAL MODERATELY EXACERBATED THE IRRITATIVE RESPONSE.

SKIN SENSITIZATION IS LOW CONCERN IN GUINEA PIGS. 1 ANIMAL HAD A WEAK REACTION TO THE TEST MATERIAL.

ACUTE INHALATION TOXICITY IN RATS IS LOW CONCERN WITH AN LC50 OF 4525 PPM FOR A 6 HOUR EXPOSURE.

SKIN IRRITATION IN RABBITS IS LOW CONCERN. THE TEST MATERIAL WAS NONIRRITATING AND EXHIBITED NO EVIDENCE OF SKIN ABSORPTION.

ACUTE INHALATION TOXICITY IN MICE IS LOW CONCERN WITH AN LC50 OF 2660 PPM FOR A 1 HOUR EXPOSURE.

REPEATED DAILY INJECTIONS IN DOGS IS LOW CONCERN. 2 G OF TEST MATERIAL CAUSED LOCOMOTOR ATAXIA AND PARALYSIS.

A REPEATED SUBCUTANEOUS INJECTION STUDY WAS DONE IN RATS. THE TEST MATERIAL PRODUCED SELECTIVE CEREBELLAR GRANULAR CELL NECROSIS.

SUBACUTE ORAL TOXICITY IN MALE RATS IS MEDIUM CONCERN. ANIMALS WERE EXPOSED TO FOUR DOSE LEVELS: 50, 100, 500, AND 1000 MG/KG. RATS WERE EXPOSED TO 50 AND 100 MG/KG FOR 12 EXPOSURES OVER 15 DAYS AND NO COMPOUND-RELATED CHANGES OCCURRED AT THESE LEVELS. RATS WERE EXPOSED TO 500 AND 1000 MG/KG FOR 13 EXPOSURES OVER 19 DAYS AND 4 OUT OF 5 ANIMALS DIED AT 1000 MG/KG. CLINICAL SIGNS INCLUDED WEAKNESS, STAGGERING, TWITCHING, HEAD TREMORS, ABNORMAL LIMB JERKING (INDICATING CNS TOXICITY), AND DECREASED WEIGHT GAIN AND FOOD INTAKE. THERE WERE HEMATOLOGICAL, CLINICAL CHEMISTRY, AND ORGAN WEIGHT CHANGES NOTED. GROSS PATHOLOGY REVEALED HEMORRHAGE IN STOMACH AND TESTES (1000 MG/KG) AND HEPATIC NECROSIS AT BOTH DOSE LEVELS. SITE OF TOXIC ACTION WAS IN THE LIVER, LYMPHOID TISSUE,

KIDNEYS, RBC, AND CIRCULATING GRANULOCYTES.

SUBACUTE INHALATION TOXICITY IN RATS IS LOW CONCERN FOR A 6 HOUR EXPOSURE. 10 ANIMALS (5/GROUP) WERE EXPOSED 12 TIMES OVER 15 DAYS TO EITHER 1600 OR 3200 PPM. THERE WAS 1 MORTALITY AT 3200 PPM. CLINICAL SIGNS INCLUDED DEPRESSED WEIGHT GAIN AND FOOD INTAKE, WEAKNESS, LACRIMATION, ALTERATIONS IN DROWSINESS, SLIGHT RESPIRATORY RATE, SLIGHT TREMORS, WHOLE BODY TWITCHING, LACK OF GROOMING, AND POLYPHYRIN TEARS. HEMATOLOGIC AND ORGAN WEIGHT CHANGES WERE NOTED. PATHOLOGIC EXAM REVEALED CHANGES IN 1 ANIMAL AND CONSISTED OF LIVER AND URINARY BLADDER CHANGES, AND HEPATIC NECROSIS, NEPHROSIS, NECROTIC THYMIDITIS, AND RHINITIS. SITES OF TOXIC ACTION WERE LIVER, KIDNEY, THYMUS, NASAL PASSAGES AND CNS.